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Abstract

I show that the predictive content of the hypothesis of subjective expected utility maximization
critically depends on what the analyst knows about the details of the problem a particular d
maker faces. When the analyst does not know anything about the agent’s payoffs or beliefs
only observe the sequence of actions taken by the decision maker any arbitrary sequence o
can be implemented as the choice of an agent that solves some intertemporal utility maxim
problem under uncertainty.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to answer the following: are there any testable implic
of the hypothesis of subjective expected utility maximization (SEU)?

SEU is the theory that states that an agent chooses actions consistent with the
mization of the expectation of a utility function that depends on the action of the age

✩ A previous version of this material circulated earlier as part of a paper entitled “The revelation princ
bounded rationality,” the Santa Fe Institute working paper #97-06-060.
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on the condition of the environment, and where the expectation is taken over the con
tion of the environment with respect to some probabilistic belief function. What is sh
in this paper is that whether SEU has testable implications crucially depends on w
known by the analyst. In particular,if (i) the analyst does not know the preferences or
the beliefs of the agent and (ii) the analyst can observe the sequence of actions over time
chosen by the agent, then SEU has no testable implications. I show this by providing a
SEU representation of a model of intertemporal behavior where the analyst does no
the preferences or the beliefs of the agent. The analyst, however, observes the se
of actions chosen. In this setupany observed behavior can be viewed as the choice o
agent that maximizes expected utility for some utility function,discount factor, uncertaint
space and prior belief.

The intuition behind this result is that when choice over time depends on the evo
of a stock that is not known to us then we have enough degrees of freedom in our
sentation of that stock to interpretany observed behavior as the solution to some prob
of intertemporal choice. In the case of SEU, the “stock” is the belief held by the agent.
nothing is known about it, it can then be described by the analyst as that which ju
whatever action the agent chose. That such a belief exists and is well-behaved from
abilistic standpoint arises from the fact that the uncertainty space over which it is defin
can also be picked arbitrarily.

The result is not surprising upon reflection about what it says, and to many it is an i
that is known to the research community. Despite this, it is often argued that a dep
from SEU is necessary in applications becausethe behavior it implies seems inconsiste
with what agents do in the real world. This suggests the need to make the point c
by presenting a stark, unambiguous case: one where complete ignorance about pre
and beliefs on the part of the analyst strips SEU of any predictive content. The result
this paper is therefore important because it provides a useful albeit extreme benchmark

The structure of the rest of the paper is as follows: In Section 2, I present an ex
of the result. In Section 3, I introduce elements of the theory of statistical decisio
Section 4, I present the result. Section 5 addresses robustness issues and Section 6 discu
the related literature. Section 7 concludes.

2. A simple example

Assume that the agent has two actions: to carry an umbrella around (a1) or to leave
the umbrella home (a2). The environment can take one of two conditions: it can ei
be sunny (S) or rainy (R). The analyst observes the sequence{(at , yt )}∞t=1 of actions and
conditions of the environment over time, where(at , yt ) ∈ {a1, a2} × {S,R} := A × Y and
knows nothing about the preferences or the beliefs of the agent. This sequence is the d
to be rationalized. Define a 1–1 map betweenA andY . This map can be arbitrary, but he
I define one that is adapted to the interpretation suggested by the labels of the el
of A andY : associatea1 to R anda2 to S. The utility function that rationalizes this data
based on this map, namely,u(a1,R) = u(a2, S) = 1 andu(a1, S) = u(a2,R) = 0. I now
turn to the construction of the belief function, which will depend on the evolution oat

over time and onu. The important thing is that it need not depend at all on the evolu
of yt .
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To build this function I adapt an idea used by Oakes (1985). Letv(yt+1 | ht ) be the
probabilistic belief of the agent about the environment in periodt + 1 given the history
ht = {(aτ , yτ )}tτ=1. Definev(yt+1 = S | ht ) = 3/4 whenat+1 = a2 andv(yt+1 = S | ht ) =
1/4 whenat+1 = a1. As a discount factor, pickρ = 0. Notice that, period by period, thi
agent is choosingat , the myopic expected utility maximizing choice when the expectatio
is taken overyt with respect to the forecastv(yt | ht−1). The literature on learning in game
(cf. Jordan, 1997, p. 154; Nyarko, 1997a, Proposition 7.1) shows that any agent who
best-responding to a prediction rule such as that given byv is, in fact, best responding t
a subjective probability distribution on some large parameter space, which in this ca
take to be equal to{S,R}∞. Hence the agent is a SEU maximizer (see also the discu
in Section 5).

3. Statistical decision theory

3.1. Actions, the environment

Consider an agent facing an intertemporalchoice problem under uncertainty. At ea
datet � 1, the agent chooses an actionat ∈ A. After choosingat she observes the conditio
of the environmentyt ∈ Y . The choice problem is being observed by an analyst who
sees the sequence{(at , yt )}∞t=1. It is therefore important to distinguish what is known
both the agent and analyst from what is known by the agent alone.The sets A and Y are
the primitives of the problem that are given and known to both the agent and the analyst.

Let A andY be complete, compact, separable metric spaces with associatedσ -fieldsA
andY , respectively. Assume thatA has at least two elements and thatY has at least the
cardinality ofA.

The set ofhistories of lengthT , HT , is theT -fold Cartesian product ofA × Y . H0

contains the single abstract elementh0, the null history. The set of all (finite) historie
is H = ⋃

T �0HT . The set of infinite sequences of profiles(a, y) is denotedZ. Let the
t th coordinate ofz ∈ Z bezt and the firstt coordinatesz(t). Let F denote theσ -field of
subsets ofH derived from the Borelσ -fields on eachHT . Leth ·h′ be the concatenation o
two historiesh andh′. A t-period history will be denoted byht . A strategy for the agent is
aF -measurable functionσ : H → A that for each history selects an element ofA. Let Σ
be the set of strategies of the agent.

The derived elements of the problem that are given and known to both the agent and the
analyst are, therefore, A, Y , HT (T = 0,1, . . .), H,F ,Z andΣ .

3.2. Payoffs, beliefs

Given the agent’s choice and the condition of the environment she receives a r
not observed by the analyst, according to apayoff function u : A × Y → �+. The agent
monitors the condition of the environment according to a collectionΘ (of models of
the environment) and aprior probability distribution v defined overΘ. Given one such
model θ and a historyh the agent has beliefs over the upcomingy given by the map
(h, θ) �→ η(· | h, θ) ∈ ∆(Y ). The interpretation is that the agent considers the conditio
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the environment to be a process governed by one of the models inΘ, but is not sure exactl
which (hence the prior probability distribution overΘ). Let u be measurable with respe
to the productA×Y and assume thatΘ is a complete, separable metric space.

The primitives of the problem that are given and known only by the agent are, therefore,
u, Θ, v andη.

It will be useful for what follows to derive fromη the map(σ, θ) �→ pµ(· | σ, θ) ∈ ∆(Z),
a probability distribution over the infinite sequences inZ.1 This distribution, derived from
the primitives known only to the agent, is consequently only known by the agent.

4. Arbitrary Bayesian rational behavior

A strategyσ is consistent with a given sequence{(at , yt )}∞t=1 if σ(h0) = a1 and for all
t � 1, σ(a1, y1, . . . , at , yt ) = at+1. A payoff functionu : A × Y → �+ is nontrivial if
there are actionsa′, a′′ and a condition of the environmenty such thatu(a′, y) �= u(a′′, y).

The main result can thus be stated as follows:

Theorem 1. For every sequence {(a∗
t , y∗

t )}∞t=1 ∈ Z there are a complete, separable metric
space Θ , a prior v ∈ ∆(Θ), a probability function η, a nontrivial utility function u, a dis-
count factor ρ and a strategy σ ∗ consistent with {(a∗

t , y∗
t )}∞t=1 such that

σ ∗ ∈ arg sup
σ∈Σ

∫

Θ

∫

Z

∞∑
t=1

ρt−1u(zt )pη(dz | σ, θ)v(dθ).

Proof. Let f : A → Y be a 1–1 measurable function.2 Defineu(a, y) = 1 if y = f (a) and
u(a, y) = 0 otherwise. Then, there is a mapâ �→ µâ ∈ ∆(Y ) such that, for every actio
â ∈ A, â ∈ argmaxa∈A

∫
Y

u(a, y)µâ(dy).3

Let Θ = Y∞; for everyθ = (y1, y2, . . .) andht = (a1, y1, . . . , at , yt ) let η(· | ht , θ) =
yt+1. By Kolmogorov’s extension theorem the priorv on Θ can be chosen so th
v1 :=margY1v = µa∗

1
and vt+1 = margYt+1

v(· | y1, . . . , yt ) = µa∗
t+1

for every finite se-
quence(y1, . . . , yt ).

Defineσ ∗ as follows: for allt � 0 and allht belonging to a measurable subset ofHt ,
σ ∗(ht ) = a∗

t+1. Pick anyρ ∈ [0,1). Thenσ ∗ maximizes SEU as required.

1 The derivation ofpµ(· | σ, θ) is as follows: First, definepµ recursively for every historyh ∈ H. Let pµ(h0 |
σ, θ) = 1 andpµ(h · (a, y) | σ, θ) = pµ(h | σ, θ) × σ(a | h) × µθ (a | h). Second, define thecylinders C(h) to be
the set of paths of playz for which z(t) = h, whereh belongs to a measurable subset ofHt . Third, definepµ

overC(h) to be equal topµ(h | σ, θ). This probability measure is then uniquely extended by continuity from
cylinders to theσ -field onZ generated by the cylinders.

2 The existence of this function follows from the fact thatA has cardinality of at least two,Y has cardinality
at leastA and these sets are complete, separable metric spaces.

3 Notice that the distributionµâ can be chosen so that it has full support onY . For example,µâ = (1 −
ε)δf (â) + εµ, whereµ has full support andε > 0 is sufficiently small.



ARTICLE IN PRESS
S0899-8256(04)00156-3/SCO AID:1185 Vol.•••(•••) [DTD5] P.5 (1-7)
YGAME:m1 v 1.30 Prn:25/11/2004; 13:01 ygame1185 by:LK p. 5

Note / Games and Economic Behavior ••• (••••) •••–••• 5

n any

t what
tion

lution
s the

bserves

ows,

analyst

ior

nt with

no
e when
is
ver
To see this notice that with the structure at hand the problem can be rewritten as

sup
σ∈Σ

∫

Θ

∞∑
t=1

ρt−1u
(
σ(ht−1), θt

)
v(dθ),

which in turn leads to supσ∈Σ

∑∞
t=1 ρt−1

∫
Y

u(σ (ht−1), y) vt (dy). To show thatσ ∗ solves
this problem it suffices (due to the one-shot deviation principle) to check that, give
partial historyhT , there is no expected profitable deviation fromσ ∗(hT ) at dateT + 1.
Recall thatσ ∗(hT ) = a∗

T +1 and notice thatvt is independent of{aτ }Tτ=1 for t � T + 1.
Hence, the problem at dateT + 1 is to chooseaT +1 ∈ A to maximize

ρT

∫

Y

u(aT +1, y)vT +1(dy) +
∞∑

t=T +2

ρt−1
∫

Y

u
(
σ ∗(ht−1, y

)
vt (dy). (1)

By construction, the first term in the summation is maximized byσ ∗(hT ). �

5. Robustness issues

It is interesting to ponder whether the result holds as we add assumptions abou
the analyst knows. For example, suppose the analyst knew the shape of the distribuη,
and the parameter spaceΘ the agent used to represent the uncertainty about the evo
of yt . Will this invalidate the result? The answer to this question is: not necessarily, a
examples below demonstrate.

• Consider the case presented in Section 2 and assume that the analyst o
{(at , yt )}∞t=1, and knows the mapη, and the parameter spaceΘ. The analyst may know
the pair(η,Θ), but nothing is gained ifΘ just happened to be{S,R}∞ and the agent’s
beliefs aboutyt a convex combination of Dirac measures. Then, as Section 2 sh
any behavior can be rationalized as SEU maximization.

• Consider now the case presented in Section 2 but assume this time that the
observes{(at , yt )}∞t=1, and that the agent knows that the sequenceyt is exchangeable
with respect to the agent’s priorv. Then, by de Finetti’s theorem, withv-probability
one, the empirical distribution ofyt converges together with the player’s poster
overyt+1 to some probability measure(µ∗,1 − µ∗) over {R,S}. Will this invalidate
the result of this paper?
The answer to this question, again, is: not necessarily. For example, consiste
the information given above is the representation withΘ = {θ}, µ = (µ∗,1− µ∗) and
v = 1θ . This representation, together with the discount factorδ = 0 and the utility
function u(a1,R) = 1, u(a1, S) = u(a2,R) = µ∗, u(a2,R) = 2µ∗, rationalizes the
given sequence{(at , yt )}∞t=1.

• The examples above, when combined, suggest conditions under which the result
longer holds. Consider once more the setup in Section 2 as in the example abov
the analyst knew that the agent considered the sequenceyt to be exchangeable. Th
time the analyst also knows that the agent’s representation of the uncertainty oyt
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is given byµ over {R,S} with Θ = [0,1] for some non-singular priorv over Θ.
Exchangeability implies that posterior beliefs are, in the limit, constrained by
realization ofθ , which means that the utility function that rationalizes a partic
sequence{(at , yt )}∞t=1, cannot be independent ofθ . As a consequence, there is no st
independent utility function that rationalizes{(at , yt )}∞t=1 in this case.

6. Related literature

In one of the first attempts to understand the restrictions imposed by SEU, Pearce
showed that when the analyst knows the agent’s preferences over mixtures of actio
SEU rules out players choosing strictly dominated strategies. Ledyard (1986) and
ers (1993) assume that only preferences over pure strategy outcomes are observa
show that, as in Pearce (1984), a notion of domination carries the testable content o
Blume and Easley (1998) and Nyarko (1997b) have shown that, given an observable
of utility functions any stochastic process of undominated actions can be the outco
a model of intertemporal optimization and Bayesian learning. Nyarko (1997b) con
the zero discount factor case while Blume and Easley (1998) consider the more g
case.From the methodological standpoint, Blume and Easley (1998)can be thought of as
a direct precursor of the present work.

Lo (2000) shows that if one is restricted to the observation of only one choice
a finite set of acts, the subjective expected utility model is observationally indistinguish
able from all models of preference that satisfy Savage’s axiom P3, which is a fo
monotonicity. Epstein (2000) points to the need for the analyst to observe choices f
least two different sets of choices where theagent has the same belief if one is to be a
to refute SEU. Border (1992) assumes that the analyst is able to observe the entire
function of the agent and shows that any choice function consistent with SEU must
stochastically dominated.

Another closely related paper is that of Green and Park (1996), which asks whe
strategy can be rationalized by maximization of conditional state dependent utility.
identify a necessary and sufficient condition,in an environment with a correctly specifie
prior, for a strategy to be rationalizable. Their condition requires for a plan not to re
“irrelevant” information. It is a very weak condition.

7. Conclusions

The present paper contributes to the literature associated with how little restrictio
assumptions of rationality impose on individual and collective behavior by showing
when the analyst knows nothing about the preferences or beliefs of an agent any se
of actions observed by the analyst can be the outcome of some model of interte
optimization and Bayesian learning.

Not all predictive content of SEU is lost in practice, however, because auxiliary ass
tions about what is known to the analyst can bemade which, jointly with observability o
actions and SEU, generate testable implications. In this sense, the result presented in
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paper is an instance of a principle known to modern philosophers of science: that n
set of theoretical assumptions can be contradicted in isolation (Caldwell, 1982, Chap
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