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a b s t r a c t

This paper provides a solution to Proebsting’s Paradox, an argument that appears to show that the
investment rule known as the Kelly criterion can lead a decision maker to invest a higher fraction of
his wealth the more unfavorable the odds he faces are and, as a consequence, risk an arbitrarily high
proportion of hiswealth on the outcome of a single event. The paper shows that a large class of investment
criteria, including ‘fractional Kelly’, also suffer from the same shortcoming and adapts ideas from the
literature on price discrimination and surplus extraction to explain why this is so. The paper also presents
a new criterion, dubbed the doubly conservative criterion, that is immune to the problem identified above.
Immunity stems from the investor’s attitudes toward capital preservation and fromhimbecoming rapidly
pessimistic about his chances of winning the better odds he is offered.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Proebsting’s Paradox is an argument that appears to show that
the investment rule known as the Kelly criterion can lead a de-
cision maker to invest a higher fraction of his wealth the more
unfavorable the odds he faces are and, consequently, risk an ar-
bitrarily high proportion of his wealth on the outcome of a single
event. According to this criterion one ought to choose the size of
one’s investment so as to maximize the expected growth of one’s
wealth. Addressing the paradox is important in that it seems to
contradict the well known fact that a bettor that follows the Kelly
criterion can never be ruined absolutely (capital equal zero) or
asymptotically (capital tends to zero with positive probability).1
The paradox was first communicated by Todd Proebsting, a com-
puter scientist, to Ed Thorp, amathematician, by email, who in turn
made it publicly known in an article in the September 2008 issue of
WilmottMagazine, amagazine that serves the quantitative finance
community.

A second reasonwhy addressing the paradox is important is be-
cause in recent years the Kelly criterion has developed a reputa-
tion of being a part of many successful investment strategies2 and
the claim has been made that the world’s most prominent stock
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1 See, e.g., Thorp (1969, 2008) and Breiman (1961). For a comprehensive survey
on the Kelly criterion and its applications see Thorp (2006).
2 See, e.g., MacLean et al. (2010). A lay reader account of the Kelly criterion’s

influence on the academic and investment communities can be found in
Poundstone (2005).
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investor, Warren Buffett, and theworld’s most prominent bond in-
vestor, Bill Gross, both allocate capital in manners that are consis-
tent with the Kelly criterion.3 Ed Thorp himself, perhaps the main
proponent of the Kelly criterion in the gambling and investment
community (and a very successful hedge fund manager in his own
right)4 explicitly employs the Kelly criterion as his chief portfo-
lio allocation rule. It has even been argued that the risk–return
characteristics of the very successful investments John Maynard
Keynes made on behalf of King’s College Cambridge’s Chest Fund
from 1927 to 1945 are very similar to those generated by the Kelly
criterion (Ziemba, 2005).

A third reason why addressing the paradox is important is be-
cause of the long standing (and somewhat unresolved) feud that
has existed since the early 1970s between the proponents of the
Kelly criterion (such as Ed Thorp and, in his time, Claude Shannon)
and its opponents (prominently, Nobel Laureates Paul Samuelson
and Robert Merton—among others). The opponents argue that it is
irrelevant that the Kelly criterion maximizes the expected rate of
growth of the individual’s wealth if this criterion leads to a portfo-
liowith risk levels that the individual is notwilling to tolerate. They
say that to properly advise an individual regarding portfolio choice
one has to identify the individual’s attitudes toward risk and con-
struct a portfolio based on those, without regard to what the Kelly
criterion would prescribe. Proponents of the Kelly criterion would
respond by saying things like: ‘‘Of course this is the case, but it does

3 See, e.g., Thorp (2006) and Gross (2006).
4 Thorp used to run two hedge funds, Princeton–Newport Partners and Ridgeline

Partners, which went nearly 30 years without a down year, and averaged 19%–20%
annual returns. See Patterson (2008).
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not deny the fact that (the Kelly criterion) has an objective prop-
erty: it has a better growth rate than that achieved by any other
strategy’’ (Cover, 2008). As a response to arguments of this type
Samuelson (1979) wrote a two page paper in 1979which, in words
of one syllable, argued that maximizing the expected growth rate
of wealth need not be appropriate. Later on, Samuelson went on to
call the Kelly criterion a ‘‘complete swindle’’ (Poundstone, 2005).
The debate stalled more or less back then.

This paper offers some bad news and some ‘‘good news’’ for
the proponents of the Kelly criterion. The bad news is that the
problem is worse than what Proebsting and Thorp anticipated
in that the following ‘skimming’ result can be proved: one can
devise a sequence of structured investments, or bets, that a Kelly
bettor wouldwillingly accept that would entice the investor to risk
virtually his entire wealth and that will keep the expected growth
of his wealth as close to zero as one wished. The paper also shows
that the so-called fractional Kelly criterion (a criterion that follows
from betting only a constant fraction of what the Kelly criterion
would dictate) is also vulnerable in the same way.

The ‘‘good news’’ is that the findings of Proebsting and Thorp,
and the generalizations discussed above, cannot be used to ar-
gue against the use of the Kelly criterion because many other in-
vestment criteria, precisely all those that Samuelson and Merton
would advocate,5 also suffer from exactly the same shortcomings.
Something deeper is generating these vulnerabilities, and the pa-
per discusses what that is: the simple fact that, embedded in most
reasonable betting systems one can devise lies the maxim ‘‘Good
odds are worth paying for’’. Once this is in place, a version of the
surplus-extracting skimming result described above basically goes
through.6

There are exceptions, however: investors that would very
rapidly become pessimistic about their chances of winning the bet-
ter odds they are offered. The paper shows the existence of a family
of investment rules with these characteristics (all ‘distant cousins’
of fractional Kelly). This family is somewhat immune to the skim-
ming result in that there is a limit to how much those bettors will
bet no matter how attractive the odds in any sequence of bets pre-
sented to them may be. This provides a half open door7 out of the
dismal world Proebsting and Thorp discovered exists for bettors
who like betting, and from which they would find hard to escape.
On that less pessimistic note, the paper ends.

The rest of the paper is devoted to a coherent presentation of
the claims made above, together with additional commentary that
would aid in the interpretation of what lies beneath Proebsting’s
paradox and its variants. The concluding section briefly discusses
the implications of the results presented to the issues related to the
structuring of financial securities, mutual fund design, and ‘‘plain
vanilla’’ betting.

For expositional simplicity I frame all decision problems below
using the terminology of fixed-odds betting. Bettorswill be regarded
as male while bookies will be regarded as female.

2. The paradox8

Suppose that you believe an event will occur with 50% proba-
bility and somebody offers you 2–1 odds on that event. Howmuch
money you should place on this bet depends on how you feel about
the tradeoff between risk and reward that is being offered to you. If

5 That is, all those based on expected utility maximization.
6 Skimming as used in the paper is a natural variant on the practices known as

‘‘price discrimination’’ in the economics literature. See Varian (1989).
7 ‘Half open’ because the investors can still be skimmed, just not completely.
8 This section is based on the account of Proebsting’s Paradox given in Thorp

(2008) and Wikipedia (2009).
you were neutral to risk and all you cared about was the expected
final value of wealth, then you would place 100% of your wealth
on the gamble, and you would ignore the fact that you may end up
losing everything with probability 50%. The Kelly criterion would
have you be much more conservative than that in that it would in-
stead have you focus on the expected growth rate of your wealth.
In the case in which you are offered the 2–1 odds (call this ‘‘Situa-
tion G’’, for ‘good’), the task is to find the fraction f G of your wealth
that solves the problem

max
f

1
2
ln(W − fW ) +

1
2
ln (W + 2fW ) ,

which yields f G = 0.25 and exposes you to a far lower risk9 than if
you place all your money on the bet. More generally, if you are of-
fered a 50/50bet that pays b to 1 theKelly criterionwould have you
bet a fraction of your wealth equal to f ∗

=
b−1
2b . Hence, if you were

offered 5–1 odds (‘‘Situation B’’, for ‘better’) according to the Kelly
criterion you would place f B = 40% on your wealth on the bet.

Now, suppose that these bets occur in sequence. You are offered
2–1 odds, bet 25% of your wealth and then are offered 5–1 odds
(‘‘SituationM ’’, for ‘mixed’). Should you place an additional bet and,
if so, how much?

The Kelly criterion will indeed have you place an additional bet,
which can be computed as follows:

max
f

1
2
ln(W − 0.25W − fW ) +

1
2
ln (W + 2 × 0.25W + 5fW )

which yields f ∗
= 0.225.

The paradox is that the total bet in this situation, f M = 0.25 +

0.225 = 0.475, is larger than the 0.4 Kelly fraction if the 5–1
odds are offered from the beginning. It is counterintuitive that you
bet more when some of the bet is at unfavorable odds.10 Todd
Proebsting emailed Ed Thorp asking about this.11

Moreover, Thorp showed that if a gambler is offered 2–1 odds,
then 4–1, then 8–1, and so on, the Kelly criterion would have you
eventually bet your entirewealth, thus exposing the bettor to a risk
of complete ruin of exactly 50%, just as if he was risk neutral. This
appears to challenge the view commonly held of the Kelly criterion
keeping the investor away from any risk of ruin.

3. The resolution

3.1. ‘‘The bettor bets more at blended 2–1 and 5–1 odds than at 5–1
odds’’

While it is correct that the bettor is facing blended (average) 2–1
and 5–1 in Situation M , what matters, for the purpose of decision
making is not the average odds but the marginal odds. The odds
that a bettor faces determine the rate at which the individual can
sacrificemoney-in-the-event-of-losing tomoney-in-the-event-of-
winning. In particular, when the bettor is offered 5–1 odds he
can sacrifice one dollar when losing in exchange for five dollars
when winning. The fact that the bettor already made bets at 2–1
odds does not alter the terms of the current 5–1 tradeoff. What

9 And a lower expected final value of your wealth.
10 Although quite obvious, it will be important in what follows to stress that f M is
the fraction of the individual’s original wealth that the Kelly bettor will ultimately
bet in Situation M .
11 In general, if a bettor makes the Kelly bet on a 50/50 bet with a payout of bG ,
and then is offered bB > bG , the bettor will, in this situation, bet a total of

f M = f B + f G
(bB − bG)

2bB
,

where f i is the Kelly bet for Situation i. From this one can tell that f M > f B .
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it does alter is the cash value of the bettor’s wealth. This is so
because individuals can now get better bets for the same cost or,
equivalently, comparable bets at a lower cost than the one the
bettor is now sitting on. Thus, the 2–1 bet will trade at a discount
in an environment in which 5–1 bets are freely available. It is thus
more accurate to say that in this situation the bettor faces the same
(marginal) odds in Situations M and B but is poorer in Situation
M relative to Situation B, and that is what explains the different
choices in both situations. One can estimate the change in the
real value of the bettor’s wealth as follows: Before the individual
makes any bet at 2–1 odds the individual’s wealth is, say,W , all in
cash. Given these odds a Kelly bettor places a bet of 0.25W . Now
consider the effect of the change in odds on the (market) value of
this bet. The question is: howmuch cash does one have to sacrifice
to obtain, at the current 5–1 odds, a bet that pays 2 when winning
and −1 when losing? The answer is the value of v that satisfies

(2 − v) + 5 (−1 − v) = 0,

that is, the value that makes the 2–1 bet as attractive as the newly
offered 5–1 bets, or v = −0.5.12 In other words, committing to a
0.25W bet and then seeing the odds improve to 5–1 is equivalent
to not having committed to any bet at 2–1, having one’s wealth
change by −0.5 ∗ 0.25W = −0.125W and then facing 5–1 odds.
In general, if a bettor makes the bet f G on a bet with a payout of bG,
and then is offered bB > bG, themarked-to-market wealthWM can
be computed as follows:

WM
=

1 + b
1 + bB

W ,

where b = f GbG + (1 − f G)bB is the ‘‘blended’’ (weighted average
of) odds.13 In the example above, the blended odds are b = 4.25
and thusWM

= 0.875W .
Based on an argument along the lines of what was espoused

above, Aaron Brown (in a personal communication to Ed Thorp
about this paradox, see Wikipedia, 2009) argued that this analysis
‘‘makes it clear that the change in behavior [of the Kelly bettor]
results from the mark-to-market loss the investor experiences
when the new payout is offered’’. While this is absolutely correct it
does not yet offer an explanation for why the mark-to-market loss
makes the bettor bet more in Situation M than in Situation B. In
particular, the mark-to market loss could have enticed the bettor
to bet less. Why is this not the case?

3.1.1. Wealth effects of a change in odds
It turns out that a consideration of an elementary fact is an im-

portant component of the full explanation as for why the Kelly bet-
tor betsmore in SituationM than in Situation B: that the individual
does not have a direct use for the bet itself, but, rather, for the out-
comes that arise from betting. In other words, consider

max
f

1
2
ln(W − fW ) +

1
2
ln (W + bfW ) ,

with solution f ∗
=

b−1
2b . What contributes to the expected growth

rate is not f ∗ directly but rather the final value of wealth in both

12 In general, to find the cash value of the bet (−w1, w2) when the (market) odds
are b to 1 on state 2 one simply computes the expression

v =
b

1 + b
(−w1) +

1
1 + b

w2.

What one is doing is expressing the value of the bundle (−w1, w2) in units of the
risk free asset, which is the bundle (1, 1). In this example, with b = 5, w1 = 0.25W
and w2 = 0.5W one gets v = −0.125W .
13 To see this notice thatWM

= W + v with v =
bB

1+bB


−f GW


+

1
1+bB

bGf GW as
in the previous endnote. The result quickly follows.
states of nature, namely, W − f ∗W when losing and W + bf ∗W
when winning. Call those wealth levels x∗

1 and x∗

2 , respectively. It
follows that

x∗

1 =
W (1 + b)

2b
, x∗

2 =
W (1 + b)

2
and so it is clear that x∗

1 and x∗

2 vary directly with W ,14 which is to
say that, other things equal, as the individual becomes poorer (W
drops) he adjusts his possible wealth levels x∗

1 and x∗

2 downwards,
and in this case in proportion to the decrease in W . Think of x∗

1 as
the dollar amount of wealth the individual keeps in cash. It is im-
portant to understand why x∗

1 drops with a decrease in W . At the
margin, the last dollar allocated to x∗

1 and x∗

2 contribute equally to
the expected growth of wealth of the individual. Of course, the bal-
ance one strikes is to keep x2 high so that one’swealth is highwhen
onewins but to keep x1 also high so that one’swealth is not too low
when one loses. If wealth were to drop belowW to, say,W , but the
value of x1 were to stay at x∗

1 this could only be achieved by sub-
stantially reducing the dollar amount the individual bets and thus
reducing greatly the possible value of wealth when one wins, x2.
At that point the risk/reward tradeoff is such that increasing one’s
bet by $1, thus reducing the value of x1, would cost less in terms
of growth rate in the event of losing than the growth rate that one
gains from betting more in the event of winning.15

The reason why this is significant is that it was established
above that the only difference between Situations M and B is that
the marked-to-market wealth level of the individual is lower in
Situation M than in Situation B and thus xM1 < xB1 (and xM2 < xB2).
Therefore, if we wish to ask, as we did before, what fraction of the
original wealthW does the individual bet in SituationM onewould

have to compute f M =
W−xM1

W and one immediately concludes that
f M > f B. This conclusion can be reached also from looking at the
expression

f M =
WM

W
f B +


1 −

WM

W


1,

which says that f M is a weighted average between f B and one,
where theweight placed on f B is the ratio of themarked-to-market
wealth to the original wealth.16 In our example above,

f M =
WM

W
f B +


1 −

WM

W


= 0.875 ∗ 0.4 + 0.125 = 0.475,

as before.
To summarize, the full answer to the question ‘‘why does the

individual bet a higher fraction of W at f M than at f B even though he
faces worse (blended) odds at M than at B?’’ is as follows:

While average odds areworse at M than at B,what is important for
the purpose of decision making is the marginal odds, and those are the
same in both situations. After the individual bets at the original odds,
bG, his portfolio can take the values


1 − f G


W and W


1 + bGf G


with equal probability. Once the individual is offered the better odds,
bB, the exchange value of his random portfolio drops to 1+b

1+bB
W ,

which makes the contribution of an extra dollar of betting toward the
expected growth rate of wealth larger than before, thus enticing the
individual to seek some of that growth by reducing his cash levels at
M relative to those held at B and thus betting more at M than at B.

14 In economics terminology: x1 and x2 are ‘‘normal goods’’.
15 The increase in the expected growth rate from betting an extra dollar when the
individual is keeping x∗

1 in cash and has wealth level W is given by 1
2

b
W (1+b)−bx∗1

−

1
2

1
x∗1
. It is easy to see that this expression is positive since, by construction,

1
2

b
W (1+b)−bx∗1

=
1
2

1
x∗1

and W > W .

16 This expression follows from the fact that f M =
W−xM1

W and that xM1 =
1 − f B


WM .
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4. A general phenomenon

While not negating the knownoptimality properties of theKelly
criterion the discussion of Proebsting’s Paradox so far appears to
suggest that this criterion leaves the bettor at risk of losing a
substantial fraction of his wealth to a bookie (or a series of bookies)
that would offer the bettor a string of bets of increasingly favorable
odds. In this Section I show that, to the extent that this is so, this
is also true not just for the Kelly criterion but for a wide variety of
betting criteria, including fractional Kelly (the practice of betting a
constant fraction of what a Kelly bettor would choose in any given
situation).

Consider first the class of rules that arise as the solution to

max
f

1
2
u(W − fW ) +

1
2
u (W + bfW ) ,

where u is increasing, twice continuously differentiable, and
strictly concave. Let fu (W , b) be the solution to this prob-
lem.17 Now let us apply this decision rule in Situations G, B and
M as above, so f G = fu (W , 2) , f B = fu (W , 5), and f M = f G + f ∗,
where f ∗ solves

max
f

1
2
u(W − f GW − fW ) +

1
2
u

W + 2f GW + 5fW


.

The question is: how does f M compare to f B?

Claim 1. f M > f B.

Proof. First define, as before, x1 = W − fW and x2 = W + bfW
and thus rewrite the problem as

max
x1,x2

1
2
u(x1) +

1
2
u (x2)

subject to
b

1 + b
x1 +

1
1 + b

x2 = W ,

with solution x∗

1 = x1 (W , b) , x∗

1 = x1 (W , b). To show f M =

W−xM1
W > f B =

W−xB1
W one can focus on the comparison between

xM1 and xB1. In Situation M the bettor faces the same marginal odds
as he faces in Situation B, but with the bettor being poorer at M .
Hence, xB1 = x1 (W , 5) and xM1 = x1


WM , 5


with

WM
=

1 + b
1 + bB

W ,

where b = f AbA + (1− f A)bB and thereforeWM < W . Hence, if we
can show that ∂x1(W ,b)

∂W > 0 then it follows that xM1 < xB1 and hence
f M > f B. This turns out to be so.18 �

5. Fractional Kelly

As mentioned above, the fractional Kelly criterion would have
you bet a fraction of what a Kelly bettor would bet in any given sit-
uation and so it can simply be described as cf ∗ for some constant c
between zero and one, where f ∗ is the full Kelly fraction. Fractional
Kelly, it is said, can protect the bettor from having an incorrect sta-
tistical model of the situation at hand. Can this be formalized?

17 The Kelly rule f ∗
=

b−1
2b is a special case from this class for u(x) = ln(x). In

general, fu (W , b) need not be independent ofW .
18 Apply the implicit function theorem to the first order conditions for

maximization of 1
2 u(x1)+

1
2 u (x2) to get ∂x1

∂W =

b
1+b u22

1
(1+b)2

u11+
b2

(1+b)2
u22

, which is greater

than zero since u11, u22 < 0.
In the traditional analysis of betting in which the Kelly criterion
is developed there is an implicit assumption: that the odds offered
to the bettor contain no information about whether one will win
or lose the wager. It is not unreasonable, however, to assume
that the bettor’s beliefs may vary with the odds the bookie offers.
For example, the bettor could wonder whether the bookie knows
something he does not. After all, what else could explain him being
offered such good odds? Let q be the probability the bettor places
on an event taking place before he is offered any kind of bet. The
bookie now offers the bettor odds b to 1 (b > 1). The Kelly bettor
finds f to solve

max
f

(1 − q) ln(W − fW ) + q ln (W + bfW ) .

However, another bettor may revise his beliefs based upon the
odds being offered to him. Let c be a constant between zero and one
that represents his confidence in his own probabilistic estimate
and let qc = cq + (1 − c) 1

1+b . This cautious bettor would pick f
to solve

max
f


1 − qc


ln(W − fW ) + qc ln (W + bfW ) .

The interpretation is that the bettor believes his chances ofwinning
are worse the better the odds he is offered. Were he to have no
confidence on his own estimate he would basically conclude that
his probability of winning when offered b to 1 odds is 1

1+b and he
would thus bet absolutely nothing.

The point here is not in the least to defend this model of be-
lief revision. Just to indicate that this model characterizes the frac-
tional Kelly criterion in this situation.

Claim 2. The solution fc to the cautious bettor problem is cf ∗, where
f ∗ is the full Kelly fraction for odds b and beliefs q.

Proof. Consider the bet of an ordinary Kelly bettor who, for
whatever reason, has beliefs over winning given by qc . This bettor
would bet a fraction of his wealth given by qc (1+b)−1

b . Now to figure
out what a cautious bettor would do simply consider this solution
and replace qc by cq + (1 − c) 1

1+b . This yields fc = c q(1+b)−1
b =

cf ∗. �

5.1. Proebsting’s Paradox and fractional Kelly

An advantage of this representation is that it provides a context
in which we can understand how a fractional Kelly bettor would
behave in Situations G, B and M as above. Consider, for example,
c = 0.5 so f Gc = 0.125 and f Bc = 0.2. What about Situation M ,
our case with ‘‘blended odds?’’ Is it still so that f Mc > f Bc ? It is
not even clear how to apply fractional Kelly without an appeal to
a representation such as the one found above. Thanks to it one can
write the problem the fractional Kelly bettor faces as

max
f


1 − qc


ln(W − 0.125W − fW )

+qc ln (W + 2 × 0.125W + 5fW )

subject to qc = 0.5q + 0.5
1

1 + 5

with q =
1
2 and solution f ∗

= 0.125. Hence, f Mc = 0.125+0.125 =

0.25 ≥ 0.2 = f Bc .
19

19 This conclusion could have also been reached by noticing that now b =

4.625, WM
= 0.9375W and by using the expression

f M =
WM

W
f B +


1 −

WM

W


= 0.9375 × 0.2 + (1 − 0.9375)

= 0.25.
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6. What is going on?

We have seen that for all the bettors that we have considered
we get that f M > f B and are therefore vulnerable to continuing to
increase their exposure to risk were they offered a string of bets
of increasingly favorable odds. Why would that be so? This section
provides an explanation for this.

What is important to recognize, again, is that, even though
bettors do not have a direct use for the bet itself, they value betting
in light of the consequences that arise from the bet. The value of a
particular bet for an individual can thus be inferred from studying
the criteria the individual uses for placing their bets. In particular,
it turns out to be true for all of the bettors considered in this paper
that the first few dollars of betting are much more valuable to
the bettor than the subsequent dollars of betting.20 Thus, a clever
bookie will recognize this fact and attempt to place different bets
with the bettor at different odds, depending on what the bookie
perceives the value of the subsequent bets is to the bettor.21 In
principle, the bookie can extract all of the value the bettor derives
from betting in this way and the bettor will likely end up betting
more than if he was simply offered the most favorable odds from
the string of bets in the first place. Call bets of this kind structured
bets and, for fixed wealth W , describe them by a function R(f )
defined over the interval [0, 1] with the following interpretation:
when the bettor bets fW dollars he gets a reward equal to R(f )W
dollars in the event of winning. Clearly, ordinary bets fit this
formalism: in that case, R(f ) = b ∗ f , with b being the constant
odds offered.

6.1. Skimming the Kelly bettor

Theorem 3. Consider an event that the bettor believes has a probabil-
ity of occurring equal to 1

2 . For any f ∈
 1
2 , 1


and any (small) ϵ > 0

there is a structured bet R(f ) such that the Kelly bettor bets a fraction
f of his wealth given those odds and the expected growth rate of his
wealth is ϵ.

Proof. Consider bets of the form

R(f ) =


1

1 − f
f if f ≤f

1

1 −ff + b

f −f  otherwise

with

b =


eϵ

1 − f

2

and

f = f −

1 − f

 √
e2ϵ − 1
eϵ

.

The idea behind this bet is as follows: it offers better and better
odds the more money the bettor wagers, up to f ≤ f . Past that
point it offers even higher (but constant) odds, given by b, on any
bets placed in excess off .

The problem for the bettor is then to

max
f

1
2
ln(W − fW ) +

1
2
ln (W + R(f )W )

20 A fact known in the economics literature as the compensated law of demand.
21 Anyone that has been offered a deal ‘‘buy one, get one at half the price’’ at a
store has been exposed to practices like this. Practices like this are known as price
discrimination in the economics literature, as discussed in the introduction.
subject to R(f ) as given above. First let us show that the expected
growth of the bettor’s wealth when betting f is indeed ϵ:

1
2
ln(W − f W ) +

1
2
ln


W +

 f
1 −f + b


f −f W


− lnW

=
1
2
ln(1 − f ) +

1
2
ln


1 +

 f
1 −f + b


f −f 

butf
1 −f + b


f −f 

=
f eϵ

−

1 − f

√
e2ϵ − 1

1 − f
 

eϵ +
√
e2ϵ − 1

 +
eϵ

1 − f
e2ϵ − 1

=


e2ϵ −


1 − f

 
eϵ

+
√
e2ϵ − 1



1 − f

 
eϵ +

√
e2ϵ − 1

 =
e2ϵ

1 − f
 − 1

and hence

1
2
ln(1 − f ) +

1
2
ln


1 +

e2ϵ
1 − f

 − 1


= ϵ.

Nownotice that the expected growth rate of the bettor’s wealth for
f ≤f is zero:

1
2
ln(W − fW ) +

1
2
ln

W +

f
1 − f

W


− lnW

=
1
2
ln(1 − f ) +

1
2
ln

1 +

f
1 − f


= 0.

This means that f = f dominates any f ≤ f . Based on this
the problem can now be recast as maxf 1

2 ln(W − fW ) +
1
2

ln

W +


1

1−ff + b

f −f W, which, after some simplifica-

tions, reduces to

max
f

1
2
ln(1 − f ) +

1
2
ln

1 − 2f + f


,

a problem that has the desired solution f ∗
= f . �

Remark 1. The condition f > 1
2 is used to guarantee thatf > 0.

The result is still true, and easier to prove, for smaller values of f
(in those cases one may have to offer the better odds first, or offer
simple, linear, odds). Those cases are not discussed in the paper as
they are not as interesting as the situations in which f can bemade
to be as large as desired. Similar considerations apply to ϵ being
‘‘small’’.

6.2. Skimming the general bettor

A result analogous to the one just shown can be derived for
bettors who seek to maximize

max
r

1
2
u(W − r) +

1
2
u (W + br) ,

as in Section 4 above, where r ∈ [0,W ]. For any such bettor with
wealthW one can determine the certainty equivalent of his random
wealth (W − r,W + br) as the cash valueCE thatmakes the bettor
indifferent between the random wealth and the cash, namely, CE
is the solution to
1
2
u(W − r) +

1
2
u (W + br) = u(CE).
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Any such bettor can be thus said to seek to maximize the certainty
equivalent of his random wealth. Call those bettors the ‘‘CE’’ bet-
tors.

The Kelly skimming result has the bettor subjected to an
arbitrarily lowgrowth rate of hiswealth. In the case of the CE bettor
consider the bettor skimmed when the certainty equivalent of the
bettor’s random wealth is arbitrarily close to the bettor’s initial
wealth, thus not much value has been generated for the bettor
from the prospect of betting, even as the bettor willingly hands the
bookie a large fraction of his wealth.22

Theorem 4. Consider an event that the CE bettor believes has a prob-
ability of occurring equal to 1

2 . For any r ∈ (0,W ) and any (small)
ϵ > 0 there is a structured bet R(r) such that the CE bettor with
wealthW bets r and the certainty equivalent of his portfolio isW +ϵ.

Proof. The structure of the proof is identical to the one above. See
Appendix CE for the details. �

6.3. Skimming the fractional Kelly bettor

Skimming the fractional Kelly bettor is harder than skimming
an ordinary Kelly bettor since as one improves the odds offered to
the fractional Kelly bettor he becomes more pessimistic about the
likelihood of winning the bet. One thus has to offer more attractive
odds to this bettor to entice him to give the bookie just about all
his wealth.

Before showing that this can be done a modeling choice has to
be made. Section 5 showed that a fractional Kelly bettor is like an
ordinary Kelly bettor except for that he becomes more pessimistic
about his chances of winning the more favorable the odds he is
offered. In understanding how the fractional Kelly bettor behaves
in the face of varying odds one must ask the question: which odds
drive the behavior of the bettor’s beliefs: marginal odds or average
odds? Let us bias the setup against being able to prove the desired
skimming result by assuming that the beliefs of the bettor are
the most pessimistic given the schedule of odds offered. In other
words: they will be driven by the highest marginal odds that the
bettor faces.23 As a general rule, this protects the bettor vis a vis
the behavior of the ordinary Kelly bettor by reducing the desired
amount the fractional Kelly bettor will wish to bet for any given
set of odds and initial beliefs q. Again, the bettor’s problem when
he faces simple (linear) odds is to

max
f


1 − qc


ln(W − fW ) + qc ln (W + bfW )

subject to qc = cq + (1 − c) 1
1+b . In our case, in the face of the

structured bet R(f ), the problem becomes

max
f


1 − qc


ln(W − fW ) + qc ln (W + R(f )W )

subject to qc = cq + (1 − c) 1
1+b

, where b = supf R′(f ). For this
definition to make sense it is required for R(f ) to be differentiable
over some interval I ⊂ (0, 1) and for b < ∞. Alternatively,
that one has a way to determine what are the best incremental
odds offered as part of the structured bet R. These are very weak
assumptions.

22 And it should be clear from the presentation that the Kelly skimming result
can be recast in terms of certainty equivalents since a Kelly bettor whose wealth is
expected to grow at the rate ϵ will have no problem trading his portfolio of bets for
an amount of cash which is exactly equal toWeϵ .
23 Marginal with respect to the bettor’s dollar amount of betting. That is, if he is
offered the non-linear bet R(f ) so that he stands to gain R(f )W when betting fW ,
themarginal odds equal the derivative of R(f )W with respect to fW , which is simply
R′(f ).
Theorem 5. Consider an event that the fractional Kelly bettor be-
lieves has a prior probability of occurring equal to 1

2 and who places
a confidence in his estimate given by c. For any f ∈

 1
2 , 1


and any

(small) ϵ > 0 there is a structured bet Rc(f ) such that the fractional
Kelly bettor bets a fraction f of his wealth given those odds and the
expected growth rate of his wealth is ϵ.

For proof see Appendix FC.

Remark 2. All the results in this paper have had as starting point
prior probabilities of an event occurring equal to 1

2 . This is without
loss of generality. Altering this number to some arbitrary number
between zero and one yields essentially the same results, for
suitably modified choice of odds to be offered to the bettor. This
will also be true for the result that follows.

7. ‘Doubly conservative’ betting

What allows the fractional Kelly bettor to be skimmed in the
same way that the full Kelly bettor is skimmed is the fact that,
no matter how good the odds offered to the bettor are, he keeps
a certain amount of optimism regarding the chances of the event
in question actually taking place. In other words: even as the
probability of the event taking place that is implied by the odds
goes to zero the fractional Kelly’s posterior beliefs remain bounded
away from zero, as they approach cq from above. This does suggest
a variation on the fractional Kelly criterion that would allow the
implied probabilities and the posterior beliefs to converge together
as the odds improve. Consider the beliefs q of an event occurring
defined as follows:

q = h (b, q) , for q ≥
1
2
and b ≥

1
q

− 1,

where h is onto, decreasing in b and increasing in q.24 Moreover, h
has the following properties:

h (b, q) ∈


1

1 + b
, q


for b >
1
q

− 1

lim
b→∞

h (b, q) = lim
b→∞

1
1 + b

= 0

lim
b↓ 1

q −1
h (b, q) = q.

The interpretation is as follows: q represents the bettor’s prior
beliefs and q represent the posterior beliefs conditional on the
odds, b. As the beliefs implied by the odds offered to the bettor get
close to the prior beliefs of the bettor, the posterior beliefs are also
close to the prior beliefs. Also, as the beliefs implied by the odds go
to zero the posterior beliefs of the bettor go to zero as well. More is
needed, though: it is necessary for q to eventually approach zero at
a sufficiently fast rate. A sufficient condition for this to take place
is as follows:

h (b, q) ∈ o


1
ln(b)


.

Identify bettors with beliefs with all these characteristics and
who seek to maximize the expected growth rate of their wealth as
the ‘‘doubly conservative’’ bettors.25

For these bettors there is an upper bound on how much they
will risk, regardless of how attractive the structure of bets offered
to the bettor may be.

24 Notice that h need not be continuous in either of its arguments.
25 Conservative both in his attitudes toward capital preservation and in his process
of belief revision.
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Theorem 6. Consider an event that a doubly conservative bettor
believes has a prior probability of occurring equal to 1

2 . There is F ∈

(0, 1) such that for no structured bet R(f ) the bettor will risk a total
fraction of his wealth greater than F on the outcome of this event.
Proof. As first step compute the value of G∗:

G∗
= sup

b≥1


h

b, 1

2


1 − h


b, 1

2

bh

b, 12


.

This supremum exists, and that it is finite and greater to one (see
Appendix DC). Next, solve for F in

(1 − F)G∗
= 1.

To see that this F is the desired bound consider the following, so-
called ‘‘two-part’’ structured bet, R2: you get to bet all you wish at
odds b > 1 provided you pay a fixed fee T = tW > 0 beforehand.
For f to be the optimal choice of this bettor in this situation it has
to be that

(W − tW − fW )(1−q) (W − tW + R(f )W )q ≥ W

and
1 − t + R(f )
1 − t − f

=
q

1 − q
b

and thus

(1 − t − f )


q
1 − q

b
q

≥ 1

which requires

(1 − f )


q
1 − q

b
q

≥ 1.

Notice that this is possible only if


q
1−qb

q
is sufficiently high. Now,

since


q
1−qb

q
is bounded from above by G∗ this means that

(1 − f ) ≥
1

q
1−qb

q ≥
1
G∗

and it follows that

f ≤ 1 −
1
G∗

= F .

It follows that f > F cannot be implemented by using two-part
structured bets. It turns out that this completes the proof since it is
a fact that if f cannot be implemented by using two-part structured
bets then it cannot be implemented at all. The argument is spelled
out in Appendix RP. �

Example 1. Consider a logarithmic version of the beliefs that lead
to fractional Kelly:

ln q = c ln q + (1 − c) ln
1

1 + b

for c ∈ (0, 1) , q ≥
1
2 and b ≥

1
q − 1. A bettor who seeks to

maximize the expected growth rate of his wealth subject to these
beliefs is a doubly conservative bettor as defined above. For this
bettor when q =

1
2 and c = 0.5 the bound described in Theorem 6

is given by

F ≈ 0.19185240680033408,

which essentially means that this ‘logarithmic fractional Kelly
bettor’ will never risk more than one fifth of his wealth on the
outcome of a single event, no matter how attractive the structured
bet offered.
The idea here, again, is not to defend this particular model of
belief revision and position sizing. Rather, it is simply to point out
the general features that a belief systemwould have to break down
the almost inescapable logic underlying Proebsting’s paradox,
and to present a specific example (in this case, the logarithmic
fractional Kelly criterion) that would implement those features.

8. Conclusions

This paper shows that the implications of the paradox identified
by Proebsting and studied by Thorp and Brown run deeper than
previously thought in that a wide family of betting rules also suffer
from versions of the paradox. There is an underlying logic to the
method one uses to generate the ‘paradoxes,’ one that is dependent
on the simple fact that any bettor who likes betting (which is to
say, for whom at least some degree of betting is instrumental in
reaching whatever the bettor’s goals happen to be) is willing to
paymoney to face sufficiently attractive odds. Once one knows the
criteria the bettor uses for betting, this willingness-to-pay can be
determined exactly, and the surplus the bettor derives frombetting
can be extracted from the bettor through a structured bet with
the following characteristics: offer attractive odds on the condition
that the bettor wagers certain amounts at less attractive odds. If
the bet is designed carefully all the bettors studied in this paper
(except for the so-called doubly conservative bettor)will, for better
or for worse, willingly give a large fraction of their wealth to the
bookies. The situation is not unlike that faced by a customer at a
store that is offered a steep discount on certain items only after
the customer commits to buying a certain number of those items
at the ‘‘regular’’ price.

Having investigated how general the skimming results shown
in this paper are it is refreshing to know that, from a prescriptive
point of view, one can develop betting criteria that are conservative
both with respect to taking excessive risk and of being excessively
optimistic, so that such a doubly conservative bettorwill never risk
too large a fraction of his wealth on the outcome of a single event,
no matter how attractive the structure of odds presented to him.

That the array of structured bets like the ones discussed above
can be developed and investigated has implications in other areas,
like in the design of securities, as the ideas employed in this paper
could be used to create assets that would be particularly attractive
to certain types of investors. Alternatively, they could be used to
create the right incentives for individuals to save a given portion
of their wealth in retirement funds. More plainly, they can be used
to investigate the extent to which bookies in established betting
markets already skim bettors using similar kinds of ideas, and the
extent to which the doubly conservative criterion would protect a
bettor’s wealth in these real life settings. The scope of applicability
of these ideas is even broader than this in the sense that they may
be of value for the analysis and structuring of products in any type
of market in which uncertainty plays a substantive role.
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Appendix CE. Skimming the general bettor

Consider bets of the form

R(r) =


I (r,W ) if r ≤r
I (r,W ) + b (r −r) otherwise,
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with I (r,W ) implicitly defined by

1
2
u(W − r) +

1
2
u (W + I (r,W )) ≡ u(W ),

b =
u′ (W − r)

u′ (W + I (r,W + ϵ))
,

andr is the solution for r in

I (r,W ) = I (r,W + ϵ) + b (r − r) ,

where ϵ being small is used to guarantee thatr > 0. The problem
for the bettor is then to

max
r

1
2
u(W − r) +

1
2
u (W + R(r))

subject to R(r) as given above. Notice that R is not a fraction in this
case. Rather, it is measured in dollars. By construction, for r ≤r
1
2
u(W − r) +

1
2
u (W + R(r)) = u(W )

and 1
2u(W − r) +

1
2u (W + R (r)) = u (W + ϵ) > u(W ). This

means that r = r dominates any r ≤r . Based on this the problem
can now be recast as

max
r

1
2
u(W − r) +

1
2
u (W + I (r,W ) + b (r −r)) .

From the first order conditions for the maximization of this func-
tion and the definitions above one can derive the expression

u′ (W − r)
u′ (W + I (r,W + ϵ) + b (r − r))

= b,

and since b =
u′(W−r)

u′(W+I(r,W+ϵ))
it follows that r∗

= r .

Appendix FC. Skimming the fractional Kelly bettor

Consider bets of the form

Rc(f ) =

(1 − f )−
1−q
q − 1 if f ≤f

1 −f − 1−q
q + b


f −f − 1 otherwise

where b and q solve


q
1 − q

b
q

=
eϵ

1 − f

q =
c
2

+ (1 − c)
1

1 + b

(1)

andf is the solution for f in

(1 − f )−
1−q
q =


1 − f

− 1−q
q e

ϵ
q + b


f − f


. (2)

To see that the system (1) has a solution insert the second brack-
eted equation inside the first and notice that as b approaches one

from above the term q
1−q approaches one and hence


q

1−qb
q

is

close to one also. On the other hand, both q and q
1−q are bounded

fromabove as b gets larger,whichmeans that


q
1−qb

q
growswith-

out bound as b grows, eventually becoming larger than eϵ

1−f
. The

implication is that, by the intermediate value theorem, there is a
value for b > 1 and q ∈

 1
1+b ,

1
2


that satisfy both equations simul-

taneously. To see that Eq. (2) has a solution notice that for f = f
the left hand side of (2) is smaller than the right hand side whereas
for f =

f−q
1−q the left hand side is positive and the right hand side is

zero. Then, by the intermediate value theorem, there is a value for
f =f where Eq. (2) is satisfied. Again, f > 1
2 is used to guarantee

thatf > 0 (and, again, a similar condition could have been derived
in terms of ϵ). The rest of the proof is identical to the ones above:
the problem for the bettor is to

max
f

(1 − q) ln(W − fW ) + q ln (W + R(f )W )

subject to R(f ) as given above. First let us show that the expected
growth of the bettor’s wealth when betting f is indeed ϵ:

(1 − q) ln(W − f W ) + q ln

W +


1 −f − 1−q

q

+ b

f −f − 1


W


− lnW

= (1 − q) ln(1 − f ) + q ln


1 −f − 1−q
q + b


f −f 

but
1 −f − 1−q

q + b

f −f  =


1 − f

− 1−q
q e

ϵ
q

and hence

(1 − q) ln(1 − f ) + q ln


1 − f
− 1−q

q e
ϵ
q


= ϵ.

Nownotice that the expected growth rate of the bettor’s wealth for
f ≤f is zero:

(1 − q) ln(W − fW ) + q ln

W +


(1 − f )−

1−q
q − 1


W


− lnW

= (1 − q) ln(1 − f ) + q ln


(1 − f )−
1−q
q


= 0.

This means that f = f dominates any f ≤ f . Based on this
the problem can now be recast as maxf (1 − q) ln(W − fW ) +

q ln

W +


1 −f − 1−q

q + b

f −f − 1


W

, which simplifies

to

max
f

(1 − q) ln(1 − f ) + q ln


1 − f
− 1−q

q e
ϵ
q + b


f − f


.

From the first order conditions for the maximization of this func-
tion and the definitions above one can derive the expression
1 − f

− 1−q
q e

ϵ
q + b


f − f


(1 − f )

=
q

(1 − q)
b,

and since
q

1 − q
b
q

=
eϵ

1 − f
,

it follows that f is the desired solution for f .

Appendix DC. Finding G∗

LetM(b) = h

b, 1

2


ln(b) and notice that limb↓1 M(b) = 0. Also,

note that the assumption about the rate of convergence of h

b, 1

2


to zero implies that eventually h drops faster than ln(b) grows as
b → ∞ and therefore limb→∞ M(b) = 0. This has the implica-
tion that M(b) is bounded above by some number M∗ < ∞. To
see this note that for fixed ε > 0 there is bε such that, for b > bε,
M(b) < ε. So the largest value forM happens for values of b to the
left of bε . Hence,

M∗
= sup

b<bε

h

b,

1
2


ln(b) ≤ sup

b<bε

h

b,

1
2


· sup
b<bε

ln(b)

=
1
2
ln (bε) < ∞.
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Nownotice that
h

b, 12


1−h


b, 12

 is positive, decreasing in b, and no greater

than one. Moreover, since h

b, 1

2


> 1

1+b for b > 1 it follows that
h

b, 12


1−h


b, 12

b > 1 for b > 1. This means that G∗ > 1. To see that

G∗ < ∞ notice that

eM(b)
= bh


b, 12


≥


h

b, 1

2


1 − h


b, 1

2

bh

b, 12



which means that G∗
≤ eM

∗

< ∞.

Appendix RP. The generality of two part structured bets

The goal is to show that if one offers a doubly conservative
bettor a structured bet R and he risks a fraction f ∗ of his wealth
on the outcome of the underlying event then there exists a two-
part structured bet R2 such that the bettor also chooses f ∗ in this
case. To construct R2 first find the value b∗ that satisfies

1 + R (f ∗)

1 − f ∗
=

h

b, 1

2


1 − h


b, 1

2

b∗,

where b corresponds to the highest marginal odds offered as part
of R. Now find the smallest value b that satisfies

h

b, 1

2


1 − h


b, 1

2

b =
h

b, 1

2


1 − h


b, 1

2

b∗.

Notice that b always exists, since h is onto and

h

b, 1

2


1 − h


b, 1

2

b∗
≤

h

b∗, 1

2


1 − h


b∗, 1

2

b∗,
which implies that 1 < b ≤ b∗. Now given such b find the value of
t that solves

1 − t + bf ∗

1 − t − f ∗
=

h

b, 1

2


1 − h


b, 1

2

b.
By construction, the two part structured bet defined by the pair
(t, b) with the interpretation ‘‘pay tW for the right to bet as much
money as you wish at odds b’’ is such that the bettor picks f
= f ∗.
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