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Abstract Suppose we know the utility function of a risk averse decision maker who
values a risky prospect X at a price C E . Based on this information alone I develop
upper bounds for the tails of the probabilistic belief about X of the decision maker.
In the paper I also illustrate how to use these expected utility bounds in a variety of
applications, which include the estimation of risk measures from observed data, option
valuation, and the study of credit risk.
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1 Introduction

Suppose we know the utility function of a risk averse decision maker who values a
risky prospect X at a price C E . Based on this very limited information, can we know
anything whatsoever about the beliefs held by the decision maker about X?
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148 E. Zambrano

The surprising answer is that we can, and the reason is that the C E cannot be too
high if the decision maker believes with high probability that the risky prospect will
perform extremely poorly. Similarly, the C E cannot be too low if the decision maker
believes with high probability that the risky prospect will perform extremely well.
The main result of this paper, Theorem 1, provides upper bounds for the tails of the
probabilistic belief of an expected utility decision maker; bounds that depend on the
utility function and on C E , but that do not depend on assumptions made on the shape
of the probability distribution that describes the beliefs of the decision maker.

To illustrate the result consider a decision maker with a constant coefficient of
absolute risk aversion, given by 1/r . Assume that this decision maker values a risky
prospect X at a price C E . Is there anything we can say about the beliefs of the decision
maker about X based on this information alone? It turns out that we can: Theorem 1
in this paper implies that this decision maker cannot assign probability greater than
14% to X taking values less than 2r to the left of C E . That is, for this decision maker,
P (X ≤ C E − 2r) ≤ 14%, an estimate made without making any assumptions about
the shape of the distribution of X. The intuition is that the decision maker would have
not been willing to pay C E for X if he or she was too pessimistic about its most likely
values. This implies that the certainty equivalent of X contains information about the
subjective probability this decision maker assigns to the extreme events based on X,
information that is modulated by the decision maker’s attitudes towards risk. I show
where the 14% in the example comes from in Sect. 2.3 below.

Upon reflection, the logic behind Theorem 1 is quite clear, and in fact the mathe-
matics behind it are very simple. It is therefore quite surprising that this result had
been overlooked, despite the wide scope of applicability that a result of this type may
have.1

The rest of this paper is devoted to a coherent presentation of the result and its proof,
together with introducing applications of these expected utility bounds to a variety
of economic problems, which include the estimation of risk measures from observed
data, option valuation, and the study of credit risk.

2 Theory

2.1 The setup

Consider a risky prospect X that takes values in a set of possible outcomes C ⊆ R.
The decision maker is risk averse and has preferences over risky prospects given by
an increasing and continuous (Bernoulli) utility function u : C → R, known to the
analyst, and by some probability distribution function P over the (measurable) subsets
of C. This probability distribution is unknown to the analyst.

Suppose that, in addition, the analyst observes that the decision maker’s certainty
equivalent for X is equal to C E . The main goal of this paper is to see if we can recover

1 An exception to this is the work by LiCalzi (2000), who developed upper and lower bounds for the
expected utility of a risky prospect based on simple statistics of the risky prospect, like its median or mode.
Hence, it can be viewed as complementary to the present work.
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some useful information about P from the fact that X is defined over C, the decision
maker has utility function u and values the risky prospect at C E .

Without loss of generality, I normalize the origin and units of u in such a way that
u := supx∈C u (x) = 0, when an upper bound for u exists on C, and
u := infx∈C u (x) = −1, when a lower bound for u exists on C.2

Throughout the paper all random variables will be denoted by bold letters.

2.2 The result

The main results of the paper is the following.

Theorem 1 Suppose X is a risky prospect valued at C E by a decision maker with
utility function u. Then, for k > 0,

(i) If u = 0,

P (X ≤ C E − k) ≤ u (C E)

u (C E − k)
, and

(ii) If u = −1,

P (X ≥ C E + k) ≤ u (C E) + 1

u (C E + k) + 1
.

Proof Let sk = sup {u (x) : x ≤ C E − k} . Since u is increasing, sk = u (C E − k) .

The definition of sk and the fact that u (x) ≤ 0 for all x ∈ C imply that

u (C E − k) 1{X≤C E−k} ≥ u (X) 1{X≤C E−k} ≥ u (X) .

Now take expected values to obtain

u (C E − k) P (X ≤ C E − k) ≥ Eu (X) .

By the definition of the certainty equivalent C E of a risky prospect, Eu (X) = u (C E).

Using this fact and rearranging yields (i).
To prove (ii) let ik = inf {u (x) : x ≥ C E + k}. Since u is increasing, ik =

u (C E + k). The definition of ik and the fact that u (x) ≥ −1 for all x ∈ C imply that

u (X) ≥ u (C E + k) 1{X≥C E+k} + (−1) 1{X≤C E+k}.

Now take expected values to obtain

2 To be sure, given any increasing and continuous utility function v with upper and lower bound on C given
respectively by v and v, define u by u (x) = v(x)−v

(v−v)
. It can be checked that u (x) ≤ 0 for all x and u = −1

as desired.
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Eu (X) = u (C E) ≥ u (C E + k) P (X ≥ C E + k) − [1 − P (X ≥ C E + k)] .

Rearranging this expression yields (ii). ��
Remark 1 An upper bound for u arises naturally, no matter the shape of C, if u is
bounded from above, as with constant absolute risk aversion preferences. Alternatively,
an upper (resp. lower) bound for u arises, no matter the shape of u, if C is bounded
above (resp. below), as in Rothschild and Stiglitz (1970, 1971).

Remark 2 The reader may notice that the proof of this result works in the same way
as that for Chebyshev’s inequality, an inequality that provides estimates of the tail of a
probability distribution based solely on estimates of its mean and standard deviation.
There is a sense in which the theorem above provides an estimate of the lower tail of the
distribution in the same way, but by using information about economically meaningful
variables, such as C E and u, rather than mainly statistical measures such as the mean
and the standard deviation of X.

The example in the next section makes this interpretive point more precise.

2.3 An example with CARA preferences

Consider a decision maker with preferences given by a Bernoulli utility function that
satisfies constant absolute risk aversion, that is,

u (x) = −e− x
r ,

for r > 0. The parameter r in this formulation measures the decision maker’s tolerance
for risk and it is equal to the inverse of the coefficient of absolute risk aversion for the
decision maker.

I now set myself to prove the claim made in the Introduction to this paper: an
individual with a constant risk tolerance of r that values a risky prospect X at a price
C E cannot assign probability greater than 14% to X taking values less than 2r to the
left of C E . That is, for this decision maker, P (X ≤ C E − 2r) ≤ 14%.

To see how this is true simply notice that the utility function being considered is
bounded above by zero and hence, by Theorem 1

P (X ≤ C E − k) ≤ e
C E−k−C E

r = e− k
r .

Replacing k with zr yields P (X ≤ C E − zr) ≤ e−z, and setting z = 2 gives the
desired result, as e−2 ≈ 14%. This simple fact is summarized in the Lemma below.

Lemma 2 Suppose X is a risky prospect valued at C E by a decision maker with
constant risk tolerance parameter given by r . Then

P (X ≤ C E − zr) ≤ e−z (1)
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Expected utility inequalities: theory and applications 151

Remark 3 It is instructive to compare this estimate with the one given by the one-sided
Chebyshev’s inequality

P (X ≤ µ − zσ) ≤ 1

1 + z2 ,

where µ and σ are, respectively, the mean and the standard deviation of X for this
decision maker. Notice that for z = 2 this gives an upper bound for P (X ≤ µ − 2σ)

of 20%, an estimate made without making any assumptions about the shape of the
distribution of X.

Remark 4 One can say that, based on the above, there is a precise sense in which, for the
purpose of coming up with upper bound estimates of the lower tail of the distribution of
beliefs of a CARA decision maker, the certainty equivalent is to the mean of the belief
distribution as the risk tolerance coefficient is to the standard deviation of the belief
distribution. This could be of importance when developing real-world applications
that involve elicitation of subjective beliefs from one or more decision makers, as in
Myerson (2005).

3 Applications

3.1 Value at risk

Value at risk is a measure used to estimate how the value of an asset or of a portfolio
of assets could decrease over a certain time period under usual conditions. Usual
conditions in this context is defined to mean “under most circumstances,” which in
turn is described with respect to a probabilistic confidence level, usually 95 or 99%.
The challenge in many applied contexts is to come up with estimates of the value at
risk for a decision maker even if we do not know the shape of the decision maker’s
probabilistic beliefs.

Formally, the value at risk at a confidence level of p of a risky prospect X worth
C E to a decision maker is the maximum loss L that the decision maker expects to
incur with probability p. It can be calculated by the following formula:

C E − (1 − p) th percentile o f X.

It turns out that the following is true:

Theorem 3 Suppose X is a risky prospect valued at C E by a decision maker with
invertible utility function u with u = 0. Then the value at risk, L, at a confidence level
of p for this decision maker must satisfy

L ≤ C E − u−1
[

u (C E)

(1 − p)

]
. (2)
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Proof From Theorem 1 and from the fact that u (C E − L) < 0 it follows that

u (C E − L) ≥ u (C E)

P (X ≤ C E − L)
.

Since u is increasing and invertible, and setting P (X ≤ C E − L) = 1 − p, then

C E − L ≥ u−1
[

u (C E)

1 − p

]
,

which gives a lower bound on the (1 − p)th percentile of the distribution of X accor-
ding to the decision maker. Rearranging gives the desired result. ��

Notice that for the case of decision makers with a constant absolute risk aversion
coefficient given by 1/r expression (2) reduces to

L ≤ −r ln (1 − p)

Example 1 Suppose X is a risky prospect valued at 100 by a decision maker with
constant risk tolerance parameter given by r = 10. Then an analyst that knows this
about the decision maker will know that the value at risk at a confidence level of 95%
for the decision maker will be below 30. That is, the analyst will know that the decision
maker considers his losses to be below a certain threshold with probability 95%; this
threshold the analyst knows will be below 30.

Remark 5 It is standard in many applications to use the variance σ 2 of a risky propect
X as a way to measure its riskiness. One potential drawback to this method is that it is
not always easy for an analyst to adequately estimate the variance of X that is implicit
in the probabilistic beliefs of the decision maker.3 The methods used above to estimate
bounds to the value at risk of a risky prospect can also be used to develop upper and
lower bounds for the variance and the half-variance of a risky prospect, bounds that
depend on the decision maker’s attitudes towards risk, on the certainty equivalent of
the risky prospect, and on its risk premium.

3.2 Option valuation

Having upper estimates of the probabilities of tail events for a decision maker can be
of use to see how this decision maker would value financial instruments whose payoffs
are tied to the occurrence of those events. In short, they can be of use for the valuation
of options and other financial derivatives.

The ability to use the inequalities developed in the present paper to put expected
utility bounds on option values is potentially very valuable, as it is known that the
parametric estimation of those tail probabilities is a challenging task. Another potential

3 See, e.g., the discussion in Morgan and Henrion (1990). See also Myerson (2005).
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problem is that sometimes we are dealing with one-of-a-kind projects for which there
is not even any previous data to use in an estimation process.

The use of upper bounds to the probability of those tail events sidesteps completely
the tail estimation problem, as it avoids making distributional assumptions. This, of
course, can come at a cost if one ends up with bounds to the option values that are
not very informative. Whether this is so or not is an empirical question that deserves
attention in its own right.

What follows illustrates the kinds of bounds on the value of options that arise from a
judicious application of Theorem 1 to the valuation of out-of-the-money put options.4

The setup is, again, a risky prospect X that takes values in a set of possible outcomes
C. The decision maker evaluates X with an increasing utility function u and with respect
to beliefs given by a distribution P, unknown to the analyst. All payoffs and prices in
this Section are expressed in present value terms.

I am interested in how much this decision maker would value a contract that gives
the decision maker the right but not the obligation to sell risky prospect X at a prede-
termined (strike) price S. I am thus interested in the value for the decision maker of
the risky prospect

TS = max {S − X, 0} ,

commonly known as a put option on X with strike price S. To find the value of TS for
the decision maker one has to find the certainty equivalent of TS, that is, the price QS

such that

u (QS) = Eu (TS) .

The following result will be needed in what follows.

Lemma 4 Suppose X is a risky prospect to be valued by a decision maker with utility
function u. Let TS be a put option on X with strike price S. Then

Eu (TS) ≤ u (S) P (X ≤ S) + u (0) [1 − P (X ≤ S)] (3)

Proof

u (TS) = u (max {S − X, 0}) = u (S − X) 1{X≤S} + u (0) 1{X≥S}

Since u is increasing, u (S − x) ≤ u (S) , so

u (TS) ≤ u (S) 1{X≤S} + u (0) 1{X≥S},

and taking expectations yields the desired result. ��

4 A similar exercise done on the valuation of call options produces bounds on the option values that are
not very informative, and it is therefore of little interest.
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Even if an analyst knows the utility function of the decision maker Eq. (3) is of
little help if one has no information about the beliefs held by the decision maker.
This is where an estimate of P (X ≤ S) can be of help. Such estimate is available for
S < C E, that is, for options that are out of the money.

In what follows I assume that u is bounded from above and normalize the origin of
u in such a way that u (x) ≤ 0 for all x ∈ C and the units of the the utility function in
such a way that u (0) = −1.5 Also, let P (X > S) = 1 − u(C E)

u(S)
. From Theorem 1 it

follows that one can interpret P (X > S) to be a lower bound on the probability that
the decision maker assigns to X taking values greater than S.

Theorem 5 Suppose X is a risky prospect valued at C E by a decision maker with
utility function u with u = 0 and for which u (0) = −1. Then, for S < C E,

Eu (TS) ≤ Eu (X) − P (X > S). (4)

Proof From Lemma 4 we have that

Eu (TS) ≤ u (S) P (X ≤ S) + u (0) [1 − P (X ≤ S)] ,

while Theorem 1 gives us a bound on P (X ≤ S) :

P (X ≤ S) ≤ u (C E)

u (S)
.

Combining these two expressions and rearranging we get

Eu (TS) ≤ u (C E)

u (S)
u (S) −

(
1 − u (C E)

u (S)

)
,

that is,

Eu (TS) ≤ Eu (X) − P (X > S).

��
Expression (4) then reads as follows: the expected utility of holding the put option

cannot exceed the expected utility of holding the original risky prospect, minus the
analyst’s lower estimate on the probability that the option will expire worthless.6

This expression can be used to find an upper bound to the value of the option, since
u (QS) = Eu (TS) and u (C E) = Eu (X). I record the formula for obtaining such
bound below.

5 Notice that I am not assuming in this case that −1 is the lower bound of u on C.
6 Of course, discussing expression (4) in this way makes sense specifically for the normalization of the
utility function chosen above.
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Table 1 Upper bound on the price of put options given a strike price of S and constant risk tolerance r for
a risky prospect worth 100 to the decision maker

r S

60 65 70 75 80 85 90

8 0.05 0.1 0.19 0.36 0.69 1.33 2.70

10 0.18 0.31 0.51 0.86 1.45 2.52 4.59

15 1.06 1.51 2.16 3.12 4.56 6.85 10.77

Corollary 6 Suppose X is a risky prospect valued at C E by a decision maker with
invertible utility function u with u = 0 and for which u (0) = −1. Then, for S < C E,

QS ≤ u−1
[

u (C E) −
(

1 − u (C E)

u (S)

)]
. (5)

Notice that for the case of decision makers with constant risk tolerance r expression
(5) reduces to

QS ≤ −r ln
[
1 + e− C E

r

(
1 − e

S
r

)]

Example 2 Suppose X is a risky prospect valued at 100 by a decision maker with
constant risk tolerance parameter. Table 1 shows upper bounds on the values of put
options of different strike prices for varying degrees of tolerance for risk.

For example, a decision maker with constant risk tolerance coefficient given by
r = 10 that values X at 100 will value a put option on X with strike price 65 at some
level that the analyst knows will never be above 0.31. Another way to put this is as
follows: given that the decision maker values X at 100 there is no probabilistic belief
that the decision maker could have about X, no matter how pessimistic it may be, that
would justify the analyst believing that the decision maker would pay more than 0.31
for this option.

3.3 Credit risk

The expected utility bounds developed in this paper can be used for estimating the
probability that an entity with limited liability will default on its debt. They can also
be used for estimating the value of this debt to some decision maker.

The setup is one in which there is an entity with limited liability that owns the
proceeds of risky prospect X. The entity has debts by an amount equal to B > 0
that are due at the moment the value of X is realized. As before, a decision maker
evaluates X with an increasing utility function u and with respect to beliefs given by
a distribution P . The entity and the decision maker in this setup may be the same,
although this is not necessary. All payoffs and prices in this section are expressed in
present value terms.
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The first result of this section is an upper bound on the probability that the entity
will default on its debt.

Theorem 7 Suppose X is a risky prospect valued at C E by a decision maker with
utility function u with u = 0. Suppose the entity that owns X has B > 0 in debts, with
B < C E. Then the probability, Pd , for this decision maker, that the entity will default
on its debt satisfies

Pd ≤ u (C E)

u (B)

Proof The entity enters default when the realized value of X is not sufficient to cover
the decision maker’s obligations, that is, when X < B. Hence, Pd = P (X ≤ B) and
an application of Theorem 1 for the case where k = C E − B yields the desired result.

��
Example 3 Suppose X is a risky prospect valued at 100 by a decision maker that has
a constant risk tolerance parameter given by r = 20. If the entity that owns X owes
40 to creditors then this decision maker believes that the entity will default on its debt
with probability Pd , a probability that the analyst knows is below 4.98%.

Due to limited liability, owning a risky prospect X with B in debts is just like
owning a call option on X with strike price B. This fact, together with the put-call
parity, implies that the value of the risky debt equals the value of riskless debt of
identical face value minus the value of a put option on X with strike price B, that is,

VB = B − Q B, (6)

where Q B is the certainty equivalent for this decision maker of TB = max {B − X, 0} .

One can therefore find lower bounds on the value of the risky debt to a particular
decision maker using the results from Sect. 3.2.

Theorem 8 Suppose X is a risky prospect valued at C E by a decision maker with
invertible utility function u with u = 0 and for which u (0) = −1. If the entity that
owns X has debts given by B < C E then the decision maker values this debt by an
amount VB that satisfies

VB ≥ B − u−1
[

u (C E) −
(

1 − u (C E)

u (B)

)]
.

Proof Combine Eq. (5), with strike price equal to B, and Eq. (6) to get the desired
result. ��
Example 4 Suppose X is a risky prospect valued at 100 by a decision maker that has a
constant risk tolerance parameter given by r = 30. If the entity that owns X also owes
40 to creditors then this decision maker values this debt at a level VB, a level that the
analyst knows is above 36.9.
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4 Discussion

To put the expected utility inequalities presented in this paper in proper perspective
it is important to reflect on the strengths and weaknesses of the approach undertaken
here regarding the elicitation of subjective beliefs.

The main weakness that the method proposed above has is that it requires the
analyst to know the decision maker’s attitudes towards risk, that is, the decision’s
maker (Bernoulli) utility function. This is, of course, problematic, as this information
can be as difficult to elicit as the subjective beliefs themselves. I wish to argue that
whether this is a serious problem or not depends on the intended application of the
results presented here.

To make this point consider that one can argue, from a strict decision theoretic
point of view, that the same procedure that is used to elicit the decision maker’s utility
function could be used to assess both the utility function and the subjective beliefs.
For example, it is known that to recover the decision maker’s utility function u (x)

defined, say, over the interval
[
x, x

]
with normalization u

(
x
) = 0 and u (x) = 1 all

that is required is that we find the “probability equivalent of x ,” namely, the value
u (x) that makes the decision maker indifferent between x and the binary lottery[
x, u (x) ; x, (1 − u (x))

]
. An identical approach could be used to elicit the subjective

cumulative distribution function F(x) of X, namely, by finding the value F (x) that
makes the decision maker indifferent between

[
$100, F (x) ; $0, (1 − F (x))

]

and

[
$100 if X ≥ x; $0 if X < x

]
,

and by allowing x to vary between x and x . If one did this of course it would not be
necessary to estimate bounds on F by using the expected utility inequalities developed
in this paper because one could recover the entire distribution F to begin with in the
same way the utility function is recovered.

On the other hand, the main advantage of the method proposed in this paper is that,
once the analyst has elicited the utility function in the context of a particular risky
prospect X, this same information can be reused again and again in the investigation
of the subjective beliefs that the decision maker would have about many other risky
prospects, and not just about the one that was employed in the elicitation of the utility
function.

In light of the above, it is appropriate to consider the results here to be most use-
ful when we have already recovered information about the decision maker’s atti-
tudes towards risk, and we wish to know how optimistic or pessimistic this decision
maker feels about the outcomes in a wide variety of different decision problems. This
approach does makes sense for many applications where, for example, the attitudes
towards risk have either been calibrated or estimated econometrically from existing
data (e.g., older, recently expired contracts) and one is interested in the beliefs that the
decision maker has over a series of different risky prospects (e.g., newer, unexpired
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contracts) for which we have information about valuations (i.e., the certainty equiva-
lents) that perhaps come from the comparison of different observed prices.

5 Conclusions

In this paper I develop expected utility bounds to the tails of the probabilistic beliefs of
a risk averse decision maker over a risky prospect based on economic magnitudes such
as the certainty equivalent and on the decision maker’s attitudes towards risk. I also
develop applications of these expected utility bounds to several economic problems,
such as estimation of risk measures from observed data, option valuation and the study
of credit risk. The bounds are very general in that they require no knowledge about
the functional form of the probabilistic beliefs held by the decision maker.

These bounds can be used in one of two ways: (i) to generate estimates of certain
unobservable variables, based on what is observable, and (ii) as an intermediate step
in a more elaborate theoretical argument. Consequently, they should be of interest to
both theoretical and empirical researchers alike.
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